Proposal for New Course				
Course Number	:	MB530		
Course Name	:	Neural Networks Fundamentals for Business		
Credits	:	2-0-0-2 (L-T-P-C) ¹		
Prerequisites	:	None		
Intended for	:	MBA		
Distribution	:	Compulsory		
Semester	:	Even		

Preamble

Neural networks gained prominence in the business slowly starting in 2010 with the advancements in processing and storage technologies. Neural networks is playing a crucial role in machine learning system development to implement AI based systems. Recent use of neural networks in enterprises is growing in a rapid rate. Business domains that have witnessed neural network use include banking and finance, sales and marketing, transportation, healthcare etc. This course provides a soft introduction to basics of neural network and its potential business applications.

Objective

On completion of this course, the student should be able to:

- Understand the basics of neural networks and its architecture
- Identify the context for neural networks
- analyse performance of neural network
- learn how to use a neural network in a given situation
- Identify its impact on specific industry and company

¹ L= Lectures per week, T=Tutorials per week – P = Practical/Lab session per week – C = Credits for course

Course Mod	ules with Quantitative lecture hours	
Module 1	Introduction to Neural Networks	(2)
History of Neu Neural Netwo	aral Networks, Real and artificial Neurons, Maths behind neural network ks.	x, Types of
Module 2	Perceptron	(4)
regression mo activation fur	basic processing element, single and Multiple Perceptrons, Linea odels of neural network, Activation function and its necessity, smooth netions- Sigmoid, Tanh, ReLU, argmax and softmax, feed-forward connectionism-distributed representation.	and non-smooth
Module 3	Backpropagation and Gradient Descent	(8)
Random, Glo training, grac Perceptrons Backpropagat static and dy	orks training processes, Constants and variables in a network, weig prot initialization, cost functions, Cross-entropy functions, Rosenbl lient descent method, Gradient Descent for solving a simple Les for identifying patterns, Gradient Descent for Multilevel Ne ion Method – Forward and Backward Pass, Adjusting the Weights namic, Stochastic gradient descent-batch and mini-batch gradient itecture – Selecting number of layers and number of neurons per laye	latt's perceptror arning problem eural Networks , Learning Rate- descent, Neura
Module 4	Supervised Learning	(6)
and Splitting neural network Neural network Neural network MNIST/iris of Vanishing gra	ed neural networks, Exploring the dataset, identifying biases in the dataset to training, testing and validation datasets, Bias-variance is architecture, bias and variance reduction techniques, diagnosing bork model building, parameter tuning, Dealing with data leakage, is es, Learning customer churn through backpropagation. Dorks for multiclass classification, Loss function for multiclass classet). Quantitative and qualitative evaluation of the solution.	tradeoff through ias and variance interpretation of lassification (eg

datasets (eg. Boston dataset or churn dataset) and cases.

Module 5	Unsupervised Learning	(4)
map, Data pre	Learning, Kohnen Self-organising maps (SOM), SOM Dimensionalit processing for SOM, deciding on Number of clusters, Performance a ppropriate datasets and cases.	-
Module 6	Time Series Forecasting	(4)
	of time series forecasting, types of time series forecasting, Time serie n, ARIMA models, Neural network autoregressive models. [10]	s smoothing and

Lab Exercises (If applicable):

Using specific software package like RapidMiner/SPSS/Weka/Azure etc

Textbooks:				
1.				
2.				
Ref	Reference Book:			
1	Kotu V. and Deshpande, B., Data Science: Concepts and Practice, Morgan Kauffman Publications, 2019.			
2	J. Kelleher, B.M. Namee and A. D'Arcy. Fundamentals of Machine Learning for Predictive Data Analytics, MIT Press, 2020.			
3	J.D. Kelleher, Deep Learning, MIT Press, 2019.			
4	James M. Keller, Derong Liu, and David B. Fogel, Fundamentals of Computational Intelligence Neural Networks, Fuzzy Systems, and Evolutionary Computation, Wiley-IEEE Press, 2016.			
5	Phil Kim - MatLab Deep Learning with Machine Learning, Neural Networks and Artificial Intelligence, Apress, 2017.			
6	Scot Page, The Model Thinker, Basic Books, 2018.			

7	Wei Di, Anurag Bhardwaj and Jianing Wei, Deep Learning Essentials: Your hands-on guide to the fundamentals of deep learning and neural network modelling, Packt Publications, 2018
8	Bernhard Mehlig - Machine Learning with Neural Networks: An Introduction for Scientists and Engineers, Cambridge University Press, 2021.