/\\ (\\ /»\',

| A | pS
== ~ Indian
7 Institute of
Technology
Mandi

Approved in 37th BoA Meeting (29-10-2020)

Course number : CSell

Course name : Program Analysis

Credits ¢ 3-1-0-4

Prerequisites : (CS202: Data Structures and Algorithms or equivalent;

(CS208: Mathematical Foundations of Computer Science or equivalent;
CS304: Formal Languages and Automata Theory or equivalent

Intended for : B.Tech., M.Tech., MS, PhD
Distribution : Discipline Elective for BTech CSE, Elective for others

1. Preamble

Program ar‘la'lys'is approximates the runtime behavior of a program by looking at its source code. The
results of program analyses are used to dnve a plethora of applications: performance-oriented
optimizations, program understanding, verification, debugging, refactoring, finding vulnerabilities,
test generation, parallelization, and so on. As a result, once an exclusive part of the back-end of
optimizing compilers, now progréfﬁ analysis finds its applications in the development of a large
number of tools in a programming language’s ecosystem. The aim of this course is threefold: (i) to
develop a f:horough understanding of the theory behind the long studied dtsmplme of analyzmcv
programs; (ii) to explore modern strategies that balance the trade-offs between the precision of an
analysis and the resources consumed therein; and (iii) to get mtroduced to vanous apphcatlons that
benefit from the results of a precise-yet-efficient program ana1y51s -

2. Learning outcomes

After taking this course, the students will: g é

* have a strong foundation in abstract interpretation, which is a way to souudly approxunate the
semantics of a computer program;

* have a thorough understanding of the various dimensions along which the precision of an analysis
can be varied and the associated trade-offs;

* be able to make intelligent decisions concerning the abstraction used to represent program
features and the data structures used to implement static analyses, with an understanding of the
corresponding effects on analysis precision and efficiency;

* be able to appreciate the challenges imposed by various features of programming languages on
designing the associated compiler technology;

* have hands-on experience with some of the modern tools and frameworks used to implement
program analyses in production and research environments; and

* be excited to use program analyses to improve different aspects of a program and the overall
programming language ecosystem.

Proposal for a New Course

DELL
Typewritten text
Approved in 37th BoA Meeting (29-10-2020)

/\/\/"‘\

(lndlm
Institute of

Techuology
Mandi

3. Course modules

Introduction to static analysis. Concrete versus abstract semantics. Abstract interpretation. Galois
connection. Symbolic execution. Control-flow graphs. Iterative dataflow analysis. Lattices and
monotonicity. Analysis dimensions. [10 hours]

* Heap analysis. Heap modeling. Points-to information. Andersen’s and Steensgard’s pointer
analyses. Variations: alias analysis, null-check analysis, escape analysis. [9 hours]

Interprocedural analysis. Call-graph construction. Context sensitivity: functional and call-string
approaches. Various context abstractions: value and Isrv contexts, object and type sensitivity.
Heap cloning. [10 hours]

« Strategies for efficiency. Demand-driven analysis. Program slicing. Analysis staging. Partial
analysis. Efficient data structures. Heuristics and machine learning. [9 hours]

« Language features and challenges. Lexical and dynamic scoping. Eager and lazy evaluation.
Call-backs and reflection. Concurrency and synchronization: may-happen-in-parallel analysis.
Speculative optimizations and 'deoptimization. Dynamic analysis. [10 hours]

+ Sneak peek into applications. Type checkmg Bug detectmn _Program correctness. Program
synt.hes1s and repair. Software refactoring. B 5 [8 hours]

4. Tutorials and asmgnments

This course involves hands-on practice with writing different program analyses, implementing the
techniques for efficiency, and learning various associated tools and language features. The classes will
teach the theory, and tutorials would train the students on the various skill-sets required to finish take-
home programming assignments.

It may be noted that as the course covers several recent topics related to designing analyses that are
precise-yet-efficient, the classes will use one or two 1mp0rtar1t analyses as running examples
(examples being alias analysis and pointer analysis for resolving virtual calls). Hence, .another aim of
the tutorial hours would be to help students imbibe the concepts learnt by makmg them write
specifications of different analyses and optimization strategms @

The take-home assignments will be based on implementing and understandmg (a) mtra- and infer-
procedural analyses; (b) strategies for imparting efficiency; (c) examples of handling trlcky language
features; and (d) non-trivial applications such as parallelization, refactoring and security. |

5. References

1. Flemming Nielson, Hanne Riis Nielson and Chris Hankin. “Principles of Program Analysis”,
Corrected Edition, Springer, 1999.

2. Uday P. Khedker, Amitabha Sanyal and Bageshri Karkare. “Data Flow Analysis: Theory and
Practice”, First Edition, CRC Press, 2009.

3. Y. N. Srikant and Priti Shankar. “The Compiler Design Handbook”, Second Edition, CRC
Press, 2007.

4. Various research papers related to the course content.

6. Similarity content declaration with existing courses: <10% (CS502 Compiler Design: Control-
flow graphs, iterative dataflow analysis, type checking.)

7. Justification of new course proposal if cumulative similarity content is >30%: N/A

Proposal for a New Course

