

<u>IIT Mandi</u> <u>Proposal for a New Course</u>

Course number	: BE 507			
Course Name	: Tissue Engineering			
Credit Distribution	: 3-0-0-3			
Intended for	: B.TechM.Tech. Integrated Dual Degree in Bio-Engineering,			
	M. Tech Biotechnology and PhD candidates			
Prerequisite	: IC 136 Understanding Biotechnology and its Applications or IC 24.			
	Materials Science for Engineers or Consent of Faculty Member			
Mutual Exclusion	: NA			

1. Preamble:

The course is designed to introduce **principles of tissue engineering** including the biological, material and engineering aspects. The course will provide a thorough understanding of tissue regeneration using material platforms, their interactions with the surrounding tissue and immune system. The dynamics of cell-extracellular matrix interaction and its effect on tissue regeneration will be covered. The applications of these principles in developing 3D printed/ bioprinted tissues and organs, as well as in vitro disease models that are the forefronts of biomedicine; will be discussed.

2. Course Modules with quantitative lecture hours:

Unit 1: Introduction to Tissue Engineering-The history and scope of tissue engineering,

Challenge in imitating nature, Cells as building blocks, Clinical translation

(4 Hours)

Unit 2: Cellular differentiation and Tissue Development -Molecular organization in cells, Cell-matrix interactions, Tissue development

(4 Hours)

Unit 3: Functional Tissue Engineering-Matrix as growth factor reservoir, Mechanobiology of matrix, Biosimilar materials as scaffolds

(6 Hours)

Unit 4: 3D Tissue Culture Techniques-Animal cell culture, Biomaterials in tissue engineering, Cell interactions with polymers, conventional 3D scaffolds, 3D printing, 3D bioprinting

(8 Hours)

Unit 5: Transplantation of Engineered Tissues & Disease Models -Host Immune Response, Immunomodulation, Disease models, applications of disease models

(6 Hours)

Unit 6: Orthopaedic Tissue Engineering -Mesenchymal stem cells, Bone ultrastructure and anatomy, Bone tissue engineering, Articular cartilage tissue engineering, Intervertebral disc tissue engineering, Orthopaedic disease models

(8 Hours)

Unit 7: *Ophthalmic Tissue Engineering*-Stem cells in the eye, Corneal replacements, Ophthalmic disease models

(6 Hours)

Laboratory/practical/tutorial Modules: NA

- 3. Text books:
 - 1. Robert Lanza, Robert Langer and Joseph Vacanti, Principles of Tissue Engineering, Academic press, USA, 2020
 - 2. Bikramjit Basu, Biomaterials Science and Tissue Engineering: Principles and Methods, Cambridge University Press, UK, 2017

4. References:

- 1. Bikramjit Basu, Biomaterials for Musculoskeletal regeneration: Concepts, Springer Nature, Switzerland, 2017
- 2. Ravi Birla, Introduction to tissue engineering: applications and challenges. John Wiley & Sons, USA, 2014.

5. Similarity with the existing courses: (Similarity content is declared as per the number of lecture hours on similar topics)

S. No.		Course Code	Similarity	Approx. % of Content
			Content	
1.	Biomaterials	BE504	Biomaterials for	10%
			tissue	
			engineering,	
			Interactions,	
			Immune response	

6. Justification of new course proposal if cumulative similarity content is >30%: NA