Course Number	: AR505
Course Name Credit Distribution	: Principles of Robot Autonomy : 3-0-0-3
Intended for	: UG, PG and PhD
Prerequisite Mutual Exclusion	: Consent of faculty advisor : None
Mutual Exclusion	. INOILC

1. Preamble:

Students will be introduced to the main topics that cover the basic principles for endowing mobile autonomous robots with perception, planning, and decision-making capabilities. Students will learn algorithmic approaches for robot perception, localization, and simultaneous localization and mapping as well as robot control.

2. Course Modules with quantitative lecture hours:

Introduction: Brief overview along with motivation and potential applications. (1 hours)

Robotic Perception: Robotic sensors, robotic sensor calibration and its importance, robot vision vs computer vision, robot localization, artificial neural networks for robot perception. **(16 hours)**

Robot Motion Planning: Overview, Configuration space, Free space, Target space, obstacle space, traditional and machine learning based planning algorithms. **(14 hours)**

Robot control: P, PI, PD and PID controller, visual servoing, and multi-robot control. (11 hours)

3. Text Books:

- 1. Choset, Howie, Kevin M. Lynch, Seth Hutchinson, George A. Kantor, and Wolfram Burgard. *Principles of robot motion: theory, algorithms, and implementations*. MIT press, 2005.
- 2. Apolloni, Bruno, et al., eds. *Machine learning and robot perception*. Vol. 7. Springer Science & Business Media, 2005.

4. References:

- 1. Cuesta, Federico, and Aníbal Ollero. Intelligent mobile robot navigation. Vol. 16. Springer Science & Business Media, 2005.
- 2. Planning Algorithms by Steve LaValle (Cambridge Univ. Press, New York, 2006).
- 3. Mouha, Radouan Ait. "Deep Learning for Robotics." Journal of Data Analysis and Information Processing 9.02 (2021): 63.

5. Similarity with the existing courses:

(Similarity content is declared as per the number of lecture hours on similar topics)

S	. No.	•	Course Code	Similarity Content	Approx. % of Content
1.	•		None	None	None

6. Justification of new course proposal if cumulative similarity content is >30%: None